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ameter also has an influence on frequency
stability of Faraday rotation (Fig. 5). The
combining of these two effects proved to
give excellent results experimentally. The
main advantage of this method lies in the
possibility of using easily accessible and low-
loss polystyrene instead of high permittivity
dielectrics, and in the fact that the ferrite
length has no effect on the broad-band per-
formance. Fig. 6 shows the experimental
results for Ferroxcube BS5, obtained with a
3-inch-long sample of optimum diameter.
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Equivalence of 0 and —1 Space
Harmonics in Helical Antenna
Operation*

In considering the propagation of elec-
tromagnetic waves along helical conductors
using the Tape Helix approximation, it is
well known' that the solution contains an
infinite number of space harmonics. The
phase constants of these harmonics are re-
lated by

2rm
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where o is the phase constant of the funda-
mental, p is the helical pitch and m is any
integer including zero. It has been shown by
Watkins? that as far as axial propagation is
concerned, it is the —1 space harmonic
which is responsible for the operation of
the helical antenna. If, however, propaga-
tion along the conductor is considered, then
the correct space harmonic to be considered
is the fundamental as used originally by
Sensiper.? It is easy to show that both ap-
proaches lead to identical results, the proof
being as follows.

Let the phase shift between adjacent
turns of the helix be denoted by ¢ with the
subscript 0 or —1; depending on whether the
fundamental or the —1 space harmonic is
being considered. Then

0o = —2r
Ao

where L is the length of 1 helical turn and A,
is the fundamental wavelength. Denoting
the axial velocity of the fundamental by v,
the conductor phase velocity for the funda-
mental is vg/sin ¥, where  is the helical pitch
angle, so that
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where v_y is the axial phase velocity of the
—1 space harmonic. This is related to the
fundamental axial phase velocity z; by

%0 Bea — coty
so that 6_; eventually simplifies to

0_y = 2—7r£]: — 2,
Yo
which is identical with the expression for 6o
except for a difference of 2« which is not
significant.

Therefore, it is equally valid to consider
either the fundamental or the —1 space
harmonic, the first relating to propagation
along the conductor, and the second to
propagation axially.

As these phase velocities apply to an in-
finite helix, it is not possible to use them di-
rectly for the finite antenna, since it has
been found by Kraus? that the phase veloc-
ity is also a function of the length of the an-
tenna. Nevertheless, it is known® that the
solution for the infinite case may be used as
a means of estimating the bandwidth of the
antenna for any pitch angle ¢, and it is now
shown that both axial and conductor propa-
gation give identical results.
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Application of Perturbation Theory
to the Calculation of »-8 Character-
istics for Periodic Structures*

The effect of small periodic changes in
the physical dimensions of closed periodic
structures can be investigated using the per-
turbation theory developed by Miiller! and
later by Slater.? From this theory the frac-
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tional change in the natural frequency, «,
of a resonant cavity caused by the introduc-
tion into the cavity of a small conducting
object of volume, 7, is given by

1 f (woH? — «E)dV
Swfw = ) T <

f l2dV

The integration in the numerator extends
only over the volume of the perturbing ob-
ject, whereas that in the denominator ex-
tends over the entire volume of the cavity,
and E and H are the amplitudes of the elec-
tric and magnetic fields.

A commonly used technique for deter-
mining the -8 characteristic for a closed
periodic structure consists of constructing
a, resonator from an appropriately chosen
length of the structure and determining the
natural frequencies of the resonator which
correspond to the field configurations of in-
terest.? If the fields within the unperturbed
structure are known, (1) may be used to
compute the effect of small changes in the
physical dimensions on these natural fre-
quencies. This technique has been used by
Vanhuyset in the construction of a linear
accelerator using a disk-loaded circular
waveguide.

If the perturbations are periodic and if
the period of the perturbation is an integral
multiple of the fundamental period of the
unperturbed structure, the resonant cavity
technique may be used to determine the
w-B characteristic for the perturbed struc-
ture. For this case (1) may be used to relate
the w-8 characteristic for the perturbed
structure to that for the unperturbed struc-
ture.

As an illustration, let the initial unper-
turbed structure be a uniform disk-loaded
circular waveguide of radius b, and let the
perturbed structure comprise cavities alter-
nately of radius _ and b as shown in Fig. 1.

Fig. 1—Uniform and pertutbed disk-loaded
circular waveguides.

If the average volume per cell is unchanged
by the perturbation and if &, —b<b, it is
found that the w-8 characteristic for the
perturbed structure coincides with that for
the uniform structure except when the phase
shift per section in the unperturbed struc-
ture is /2. For this situation (which corre-
sponds to a = phase shift per section in the
perturbed structure), two frequencies are
found, indicating the presence of a stop
band. The width of the stop band is given
by the difference between these two [re-
quencies.

2 B, Epsstein and G. Mourier, “Définition, mesure
et caractéres des vitesses de phase dans les systémes
4 structure périodique” Anw. Radioéleciricité, vol. 10,
p. 64; January, 1955.

4V, J. Vanhuyse, “On the proper frequencies of
terminated corrugated waveguides with slightly dif-
ferent diameters,” Physica, vol. 21, p. 603; July, 1955.



