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ameter also has an influence on frequency
stability of Faraday rotation (Fig. 5). The

combining of these two effects proved to
give excellent results experimentally. The

main advantage of this method lies in the

possibility of using easily accessible and low-

10SSpolystyrene instead of high permittivity

dielectrics, and in the fact that the ferrite
length has noeffect onthebroad-band per-

formance. Fig. 6 shows the experimental
results for Ferroxcube B5, obtained with a

3-inch-long sample of optimum diameter.
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Equivalence of O and – 1 Space

Harmonics in Helical Antenna

Operation*

In considering the propagation of elec-

tromagnetic waves along helical conductors
using the Tape Helix approximation, it is

well knownl that the solution contains an
infinite number of space harmonics. The

phase constants of these harmonics are re-
lated by

where L30is the phase constant of the funda-
mental, P is the helical pitch and m is any
integer including zero. It has been shown by
Watkinsz that as far as axial propagation is

concerned, it is the — 1 space harmonic

which is responsible for the operation of

the helical antenna. If, however, propaga-

tion along the conductor is considered, then
the correct space harmonic to be considered

is the fundamental as used originally by
Sensiper.~ It is easy to show that both ap-

proaches lead to identical results, the proof
being as follows.

Let the phase shift between adjacent
turns of the helix be denoted by o with the
subscript O or — 1; depending on whether the
fundamental or the — 1 space harmonic is

being considered, Then

00 = g.2T

where L is the length of 1 helical turn and XO
is the fundamental wavelength. Denoting

the axial velocity of the fundamental by VO,
the conductor phase velocity for the funda-
mental is uO/sin +, where@ is the helical pitch
angle, so that
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where o_I is the axial phase velocity of the
– 1 space harmonic. This is related to the
fundamental axial phase velocity uo by

v–l ha—.
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so that o–I eventually simplifies to

which is identical with the expression for 6’o

except for a difference of 2rr which is not

significant.
Therefore, it is equally valid to consider

either the fundamental or the — 1 space
harmonic, the first relating to propagation

along the conductor, and the second to
propagation axially.

As these phase velocities apply to an in-
finite helix, it is not possible to use them di-
rectly for the finite antenna, since it has

been found by Kraus’ that the phase veloc-
ity is also a function of the length of the an-

tenna. Nevertheless, it is known5 that the

solution for the infinite case may be used as
a means of estimating the bandwidth of the
antenna for any pitch angle ~, and it is now

shown that both axial and conductor propa-
gation give identical results.
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Application of Perturbation Theory

to the Calculation of o-~ Character-

istics for Periodic Structures*

The effect of small periodic changes in
the physical dimensions of closed periodic
structures can be investigated using the per-
turbation theory developed by Mttllerl and
later by Slater. z From this theory the frac-
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tional change in the natural frequency, a,
of a resonant cavity caused by the introduc-

tion into the cavity of a small conducting
object of volume, ~, is given by

s(/.LOH2-- eJCiY)dV
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The integration in the numerator extends
only over the volume of the perturbing ob-
ject, whereas that in the denominator ex-
tends over the entire volume of the cavity,

and E and H are the amplitudes of the elec-
tric and magnetic fields.

A commonly used technique for deter-

mining the O@ characteristic for a closed
periodic structure consists of constructing

a, resonator from an appropriately chosen

length of the structure and determining the

natural frequencies of the resonator which

correspond to the field conf~gurations of in-

terested If the fields within the unperturbed
structure are known, ( 1) may be used to
compute the effect of small changes in the
physical dimensions on these natural fre-
quencies. This technique has been used by
Vanhuyse4 in the construction of a linear
accelerator using a disk-loaded circular

waveguide.
If the perturbations are periodic and if

the period of the perturbation is an integral
multiple of the fundamental period of the

unperturbed structure, the resonant cavity
technique may be used to determine the

@ characteristic for the perturbed struc-
ture. For this case (1) may be used to relate

the @ characteristic fcm the perturbed
structure to that for the unperturbed struc-
ture.

As an illustration, let the initial unper-

turbed structure be a uniform disk-loaded
circular waveguide of radius b, and let the

perturbed structure comprise cavities alter-
nately of radius b– and b+ as shown in Fig. 1.

Fig. l—Uniform and perturbed disk-loaded
circular wavegui ales.

If the average volume per cell is unchanged

by the perturbation and if b+ –b<<b, it is
found that the a-~ characteristic for the

perturbed structure coincides with that for
the uniform structure except when the phase

shift per section in the unperturbed struc-
ture is 7r/2. For this situation (which corre-

sponds to a rr phase shift per section in the
perturbed structure ), two frequencies are
found, indicating the presence of a stop

band. The width of the stop band is given
by the difference between these two fre-

quencies.
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